INTRODUCTION TO PYTHON

LECTURE 4: Object Oriented
Programming

Asem Elshimi

"The Zen of Python" — Tim Peters

is better than ugly.

is better than implicit.
is better than complex.
is better than complicated.
is better than nested.
is better than dense.
counts.

Special cases aren't special enough to break the rules.
Although beats purity.
Errors should never pass silently.

Unless

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Outline

Object oriented
programming

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Everything is an object

° can create new objects of some type
° can manipulate objects
° can destroy objects

o explicitly using del or just “forget” about them

> python system will reclaim destroyed or inaccessible objects — called “garbage collection”

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Garbage collection

Examples, where the reference count increases:
° assignment operator

° argument passing

o appending an object to a list (object's reference
count will be increased).

x = []
y = [x, [x], dict(x=x)]

https://rushter.com/blog/python-garbage-collector/

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

dict
] items

list
3 items

l

list

1 items

https://rushter.com/blog/python-garbage-collector/

Objects

1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

Each is an object, and every object has:
° atype

° data

o procedures

An object is an instance of a type:
° 1234 is an instance of an int

o "hello" is an instance of a string

3/29/2019 INTRODUCTION TO PYTHON. LEC:4 6

3/29/2019

EXAMPLE:
11,2,3,4] has type list

= how are lists represented internally? linked list of cells

L =

4.
N 0@*;00’}?{@
' '’

* how to manipulate lists? o, ©
* L[i], L[i:73], +
* len(), min(), max(), del(L[i])
* L.append(),L.extend(),L.count(),L.1index(),

L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()
= internal representation should be private

= correct behavior may be compromised if you manipulate
internal representation directly

INTRODUCTION TO PYTHON. LEC:4

THE POWER OF OOP

" bundle together objects that share
* common attributes and
* procedures that operate on those attributes

= use abstraction to make a distinction between how to
implement an object vs how to use the object

= build layers of object abstractions that inherit
behaviors from other classes of objects

" create our own classes of objects on top of Python’s
basic classes

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Define your own type

keyword Name/type Parent
I class"Coordinate"objectl) :

#define attributes here

° Coordinate is a subclass of object
° object is asuperclass of Coordinate

3/29/2019 INTRODUCTION TO PYTHON. LEC:4 9

Class attributes

Data attributes:
o Other objects contained within.

Procedural attributes:
o Methods

o Ex: distance()

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

init

: , Data for
class Coordinate (object): initializing
defI_init_Mselfl, Ix, yl) :
2\ \S
QP £KO <
& N e’ Al
NRIREAIRNS QT & XN
A s\\‘\ < eo 6‘\
© selfl.x |= x S N2
2
selflyl|= vy

Data attributes
for coordinate
objects

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

IMPLEMENTING USING
THE CLASS vs THE CLASS

= write code from two different perspectives

implementing a new using the new object type in

object type with a class code
* define the class * create instances of the

e define data attributes object type
(WHAT IS the object) * do operations with them

* define methods
(HOW TO use the object)

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Actually initializing an instance

c = Coordinate(3,4) #create a new object of type
fcoordinate and pass 3,4 to its init

origin = Coordinate (0,0)

~ init (self, x, y)

print (c.x)
No need to pass self
print (origin.x)

3/29/2019 INTRODUCTION TO PYTHON. LEC:4 13

Defining a method

class Coordinate (object) :

def init (self, x, y):

X=X Accessing

self.y = vy Another attribute
argument using dot

def distancekselfllotherb: notation

x diff sg = (self. x—othe**2
y diff sg = (self.y-other.y)**2

return (x diff sgq + y diff sq)**0.5
freturns a number! not a coordinate object

3/29/2019

INTRODUCTION TO PYTHON. LEC:4

Function vs method

method function
Acts on objects of a class. Infers a type of objects
Takes self as an argument Functions can be defined in any
_ scope
Uses dot notation : :
° In global scope, as we've seen in
the past

> Inside other functions, as we've
seen in the past

° Inside class objects

(take params, do operations, return)

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Using method

c = Coordinate(3,4)

zero = Coordinate (0,0)

prinistance)

Self object Other object
#==>5

print (Coordinate.distance(c, zero))

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Print

c = Coordinate(3,4)

print (c)
<__main__.Coordinate object at 0x7fa918510488>

<3,4>

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Str

Special method
def| str [|(self):

return|"<"+str(self.x)+","+str(self.y)+">" |

Must return a string

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Types

#can ask for the type of an object instance

c = Coordinate(3,4)
print(c) # runs str

#=> <3,4>

print (type(c))

#=> <class main .Coordinate>
print (Coordinate)

#=> <class _ main__.Coordinate>
print (type (Coordinate))

#=> <type 'type'>
print(isinstance(c, Coordinate))

#=>True

3/29/2019 INTRODUCTION TO PYTHON. LEC:4 19

SPECIAL OPERATORS

"+, -, ==,<, >, len(), print, and many others

https://docs.python.org/3/reference/datamodel.html#basic-customization

" like print, can override these to work with your class

= define them with double underscores before/after
add (self, other) self + other

__sub_ (self, other) self — pother
__eg (self; other) gelf == othet
lt (self, other) self < other
len (selr) len (self)

stk (self) print self

strl+str2

... and others
3/29/2019 INTRODUCTION TO PYTHON. LEC:4

CLASS DEFINITION INSTANCE
OF AN OBJECT TYPE vs OF A CLASS

" class name is the type " instance is one specific object

class Coordinate (object) coord = Coordinate(1l,2)

= class is defined generically = data attribute values vary
* use self to refer to some between instances

instance while defining the cl = Coordinate(1,2)

class c2 = Coordinate (3, 4)
(self.x - self.y)**2 * c1 and c2 have different data
* self isa parameter to attribute values c1.x and c2.x

methods in class definition because they are different
objects

= class defines data and * instance has the structure of

methods common across all the class
instances

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

OOP example: fractions

create a new type to represent a number as a fraction:
° internal representation is two integers

> Numerator
> Denominator
° interface a.k.a. methods a.k.a how to interact with fraction objects:
° add, subtract
o print representation, convert to a float.

o invert the fraction.

3/29/2019 INTRODUCTION TO PYTHON. LEC:4 22

class Fraction (object):

mwwwn

A number represented as a fraction
def init (self, num, denom):
""" num and denom are integers """
assert type(num) == int and type(denom) == int, "ints not used"
self.num = num
self.denom = denom
def str (self):
""" Retunrs a string representation of self """
return str(self.num) + "/" + str(self.denom)
def add (self, other):
""" Returns a new fraction representing the addition """
top = self.num*other.denom + self.denom*other.num
bott = self.denom*other.denom
return Fraction(top, bott)
def sub (self, other):
""" Returns a new fraction representing the subtraction """

top = self.num*other.denom - self.denom*other.num
bott = self.denom*other.denom
return Fraction(top, bott)

def float (self):
""" Returns a float value of the fraction """
return self.num/self.denom

def inverse(self):
""" Returns a new fraction representing 1/self """

return Fraction(self.denom, self.num)
-]

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Fraction () examples

a = Fraction(1l,4)

b = Fraction(3,4)

c =a+ b # c is a Fraction object

print (c) 16/16

print (float (c)) 1.0

print (Fraction. float (c)) 1.0
print(float(b.inverse())) 1.3333333333333333
c = Fraction(3.14, 2.7) Assertion error

print a*b

3/29/2019

error, did not define how to multiply two Fraction objects

INTRODUCTION TO PYTHON. LEC:4

24

Getters and setters

class

getters

setters

3/29/2019

Animal (object) :

def init (self, age):
self.age = age
self.name = None

def get age(self):

def

return self.age
get name (self):

return self.name

def

def

set age(self, newage):
self.age = newage

set name(self, newname=""):
self.name = newname

def

~_str (self):

return"animal :"+str(self.name)+":"+str(self.age)

INTRODUCTION TO PYTHON. LEC:4

Information hiding

a Animal (3)
a.age #not recommended

a.get age()

class Animal (ocbject):
def init (self, age):
self.years = age
def get age(self):
return self.years

outside of class, use getters and setters instead:
good style, easy to maintain code, prevents bugs

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Inheritance

child classes override or extend the functionality (e.g., attributes and
procedures) of parent classes.

3/29/2019 INTRODUCTION TO PYTHON. LEC:4 27

Parent class
class Dog(object):
Initializer / Instance attributes
def init (self, name, age):
self.name = name

self.age = age

instance method

def description(self):

return "{} is {} years old".format(self.name, self.age)

instance method
def speak(self, sound):

return "{} says {}".format(self.name, sound)

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Child class (inherits from Dog class)
class RussellTerrier (Dog) :
def run(self, speed):

return "{} runs {}".format (self.name, speed)

Child class (inherits from Dog class)
class Bulldog (Dog) :
def run(self, speed):

return "{} runs {}".format(self.name, speed)

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Child classes inherit attributes and
behaviors from the parent class

Jim = Bulldog("Jim", 12)
print(jim.description())

Jim is 12 years old

Child classes have specific attributes
and behaviors as well

print(jim.run("slowly'™))

Jim runs slowly

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Is jim an instance of Dog()?

print(isinstance(jim, Dog))
True
True
Is julie an instance of Dog()? False '
julie = Dog("Julie'", 100) ERROR!

print(isinstance(julie, Dog))

Is johnny walker an instance of Bulldog()
Jjohnnywalker = RussellTerrier("Johnny Walker'", 4)
print(isinstance (johnnywalker, Bulldog))

Is julie and instance of jim?
print(isinstance(julie, jim))

3/29/2019 INTRODUCTION TO PYTHON. LEC:4

Building a range class

for i in range(3):
print(i, sep="',

3/29/2019

‘)

Introduction to Python. Lec:4

N R ©

Building a range class

def range(n):
i=20
while i < n:
yield i
i +=1

for i in range(3):

I+
I
v

print(i)

N R

3/29/2019 Introduction to Python. Lec:4

LBE: Building a range class

class range: for i range(3):

def _init_ (self, n): print(i, sep=", ") #=>0,1, 2
self.n n
self.1i 0

def __iter_ (self): Any generator can be written as a class
return self

def _ next (self): Generators are much more concise though!
if self.i self.n:
tmp = self.i
self.i 1
return tmp

This is how you notify

the caller that the iterator is expended

else:
raise StopIteration

3/29/2019 Introduction to Python. Lec:4

OBJECT ORIENTED
PROGRAMMING

" create your own collections of data
" organize information
= division of work

* access information in a consistent manner

* add layers of complexity

" |ike functions, classes are a mechanism for
decomposition and abstraction in programming

3/29/2019

Consider when to use OOP

Previous slides just contain buzzwords
° Buzzwords let you communicate with others

General rule of thumb: if it's a small project or only a few people are
working on it, OOP may not be necessary

Good OOP is hard, bad OOP gets in the way

3/29/2019 INTRODUCTION TO PYTHON. LEC:4 36

Classification of Circuit Components

‘When one thinks of circuit elements, a myriad of objects immediately comes to mind. These devices include wires, AND gates, transistors, input and output ports, RS-latches. HIGH and LOW signals and so on. For the purpose of this
report, objects which are at the digital level and above will only be considered. Therefore, switch level devices such as transistors will not be considered.

One possible way to classify these numerous objects is to consider all the circuit entities at their highest level of abstraction and attempt to group objects which have similar properties under the same base class. From this, three very
general classes are formed:

e component -- All elements derived from this class process input signals and generate output signals to the objects to which they are connected. It is possible for one component to be parr of another component. Circuit elements
which can be considered as kind of components would include AND gates, RS-latches and random functional blocks.

® Connector -- All elements derived from this class would be responsible for connecting components with other components or with the external world. Each connector is part of a component at some level of abstraction. Since a
connector can ~'feed" one or more components via fan-out, a list of components can be considered part of a connector. Some circuit elements which are kind of connectors include wires, and I/O ports.
Signals -- Objects instantiated from this class are passed from component to component via the connectors. As will be shown later, a list of signals can be considered as part of a wire. This report will consider signals as two
entities: a signal value (such as HIGH, LOW or X) and an associated unit of time. Since signals are used almost exclusively during the simulation of circuitry, a detailed analysis of this class will be postponed until the next
chapter.

As alluded to above, linked list classes are required for components and signals. As will be shown in the next section, the need will also arise for a linked list class for IO ports. Due to the current lack of parameterized types in the C++
language, some duplication of code is necessary to create the three linked list classes. Fortunately, the replication of code is relatively small.

The component_Class
o The compenent_List Class
The connector Class
The wire Class
The port Class
o The Input and output Class
o Theport_List Class

http://www.cs.mun.ca/~donald/bsc/nodel7.ht
mI#SECTION00510000000000000000

INTRODUCTION TO PYTHON. LEC:4

http://www.cs.mun.ca/~donald/bsc/node17.html#SECTION00510000000000000000

Questions?

THANK YOU

